Using machine learning to reveal financial insight

Using machine learning to reveal financial insight

New machine learning platforms can be quickly and accurately tailored to unlock fundamental investment strategy insights in hours rather than months. Charles Brecque, Mind Foundry CX Operations Manager, explains how these new platforms are enabling investment analysts to take-on the role of citizen data scientist for the first time, augmenting their extensive industry knowledge with advanced machine learning capabilities.

Fundamental investment success involves building a thesis on global trends and future market directions, and identifying relevant investments that are aligned with this strategy. This second process is long and laborious. Previously, applying machine learning to assist would require the use of expensive data scientists with little knowledge of investment issues, to help review financial data of potentially thousands of relevant businesses and identify under- or over-priced investments. Highly accessible machine learning platforms are changing all this.

Getting started: gathering data
It’s simple to get started. Our investment analyst would extract relevant financial data – anything from revenue and Earnings Per Share to operating margins – from a commercially available financial research platform such as Bloomberg. Once a suitably sized data set has been acquired, our investment analyst then awards scores of 1 to good investments, and 0 to inadvisable investments, for example based on whether the stock price increased significantly over the past year or not.

Fully assisted data preparation
Data preparation is typically a tedious and time-consuming task for suitably qualified data scientists – with many stating it comprises up to 80% of their workload. With a humanised machine learning platform, powerful data preparation and manipulation capabilities are made accessible to employees of all skill levels – in this case our investment analyst – cutting the time, resources and expertise required to prepare financial data.

Spotting the inconsistencies and errors
A key functionality of such platforms is providing actionable advice on how to best correct errors within data sets. In this investment context, take a data set containing missing values for share Payout Ratios. A humanised machine learning platform will flag this issue to the analyst and provide several methods to correct it. Our investment analyst may have contextualised knowledge of why this is the case – such as no dividends being paid out to investors – and take the opportunity to automatically fill in all missing Payout Ratio values with zero.

To save time on similar data preparation activities in the future, our investment analyst can save the data preparation workflow for auditing and reuse purposes by colleagues.

At this stage, it is possible to view a visualisation of how promising investment targets are distributed based on the various captured financial data points, such as cash flow. It’s a strong possibility that at this stage no clear pattern will be evident. However, this user-led data preparation is an invaluable tool in providing investment analysts with a unique opportunity to visualise and manipulate raw data prior to model selection and deployment.

Building a model that is effective
Intuitive machine learning platforms identity an effective model with a high level of accuracy to apply to data sets and provide justification for the suggestion. These models avoid overfitting – that is, fitting models to training data to the extent that they struggle with new and unseen data and fail to provide accurate predictions.

In the case of Mind Foundry, the platform uses a Bayesian approach which learns from each iteration what works and what doesn’t to quickly identity the most effective model with a high forecasting accuracy. Selected models can be used within the platform or deployed through a specific application or Excel spreadsheet to make live forecasts.

Building an investment portfolio with more insight
Machine learning models typically uncover intricate relationships between complex financial data points – drawing conclusions which would be missed by analysts without access to machine learning.

Our investment analyst can go further and ask their machine learning platform to cluster the companies. This can then be used for final risk analysis when constructing an investment portfolio.

Where next for machine learning in finance and investment?
Humanised machine learning platforms offer highly intuitive, user-centric interfaces to guide users step-by-step through the entire process, from data preparation to model deployment. Our investment analyst can directly use machine learning to unlock detailed insights from financial data, at speed and scale, without specialist training or data science expertise. The best way to get started is to pick a stage of the investment process which could benefit from experience gathering. This will enhance the analyst’s ability to perceive experience and as a result improve the performance of the portfolio by adding one more green or red flag in the decision-making process. At this stage, our investment analyst has truly become a citizen data scientist.

These capabilities also offer promising applications in the finance and investment sectors beyond informing investment analyst strategies. Strong use cases today include using machine learning to forecast company revenues to derive valuations, predict the failure of trades for trade settlement, predict and anticipate large drawdowns, forecast EPS beats and misses, and optimise marketing and sales operations for funds that rely on distribution strategies. With Mind Foundry, we’re already bringing these valuable opportunities to quantitative hedge funds around the world.

Charles Brecque is CX Operations Manager at University of Oxford machine learning spin-out Mind Foundry.

Most Popular

Thought Leaders

Emerging markets securities lending update

eSecLending's Ed Oliver provides an update on securities lending in emerging...

Pirum in the Americas: An evolving company in complex times

Nancy Steiker, head of business development, Americas, Pirum

HSBC: Navigating EM complexities through customisation

Matt Kiraly and Murat Demir discuss emerging market trends in Latin America.

Challenges to the sec finance status quo

Natixis’ Anthony Caserta and Saverio Costa outline the opportunities and...

EquiLend Spire: Untangling the sec finance spider web

EquiLend’s Paul Lynch and Dan Dougherty and Stonewain’s Armeet Sandhu spoke to...